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ABSTRACT

This paper presents the foundations that lead to the
EKV MOS transistor compact model. It describes all the
basic concepts required to derive the large-signal and small-
signal charge-based model that is valid in all modes of in-
version, from weak to strong inversion through moderate
inversion. The general small-signal model valid in quasi-
static and non-quasi-static operation is also presented and
all its components are described. It is also shown that the
charge-based approach allows to derive the gm/ID charac-
teristic that is valid in all modes of inversion.

I. INTRODUCTION

There has been an increasing interest in the recent years
for charge-based and surface potential MOST models since
they allow to cover a wide range of bias in a continuous way
[1], [1], [2], [3], [4]. They also allow to separate the funda-
mental physical relations existing between the charges and
the currents on one hand and the charges and the terminal
voltages on the other. This paper presents the foundations
of the large-signal and small-signal quasi-static and non-
quasi-static EKV charge-based model.

II. BASIC CONCEPTS

A. Device Symmetry

As shown in the cross-section of Fig. 1, the MOST is
basically symmetrical with respect to the source and the
drain. This feature can be exploited when modelling the
device by referring the terminal voltages to the local sub-
strate instead of the source electrode as it is usually done
in most Spice compact models. This leads to expressions
that are symmetrical with respect to the source and the
drain voltage [5].

B. Drain Current

The drain current is given by [6]

ID = µnW

(
−Q′

i ·
dΨs

dx
+ UT · dQ′

i

dx

)

= µnW (−Q′
i) ·

dVch

dx
,

(1)

where µn is the carrier mobility (assumed to be con-
stant along the channel), W is the channel width, Q′

i is
the inversion charge density, Ψs the surface potential and
UT � kT/q the thermodynamic voltage. Vch is the channel
voltage, defined as the quasi-Fermi potential of the minor-
ity carrier and representing the disequilibrium introduced
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Fig. 1. MOST cross-section.

by non-zero source and drain voltages [5]. Vch is equal to
VS at the source (i.e. for x = 0) and VD at the drain (i.e.
for x = Leff ).

C. Inversion Charge Linearization

The EKV charge model is based on the fundamental rela-
tions existing between the charges, the transconductances
and the surface potential. The inversion charge density Q′

i

is given by [5], [6]

Q′
i = C ′

ox · (VG − VFB − Ψs − γs

√
Ψs). (2)

where C ′
ox � εox/tox is the oxyde capacitance per unit area,

VFB the Flat-Band voltage (accounting also for the effective
interface charge Q′

ox) and γs is the substrate factor defined
by [5], [6]

γs �
√

2qεsiNs

C ′
ox

, (3)

where Ns is doping level in the substrate (assumed to be
constant in the channel region), q the elementary charge
and εsi is the silicon permittivity.

Fig. 2 shows that, at a given gate voltage, Q′
i is almost

a linear function of Ψs in the inversion region [7]. It can
therefore be approximated as

Q′
i
∼= nq · C ′

ox · (Ψs − Ψs0), (4)

where Ψs0 is the value of Ψs for which Q′
i = 0 for a given

gate voltage, which depends on VG according to

Ψs0 = VG−VFB +γs ·
(

γs

2
−

√(γs

2

)2

+ VG − VFB

)
. (5)

Factor nq in (4) is defined as [8], [7], [9]

nq � 1
C ′

ox

· ∂Q′
i

∂Ψs

∣∣∣∣
VG

= 1 +
γs

2 · √Ψs

(6)
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Fig. 2. Inversion charge density Q′
i normalized to C′

oxUT versus the
surface potential normalized to UT .

and where Ψs is chosen between 2ΦF and Ψs0 in order
to minimize the approximation error with ΦF being the
electrons Fermi potential.

D. Current and Charge Normalization

The above charge linearization allows to write the deriva-
tive of the surface potential as [1], [3], [8]

dΨs

dx
=

1
nqC ′

ox

· dQ′
i

dx
, (7)

which can be used in (1) to express the drain current as a
function of the inversion charge density [8]

id � ID

IS
= −(2q′i + 1) · dq′

i

dξ
, (8)

where the drain current and the inversion charge density
have been normalized with the specific current IS and the
specific charge density Q′

S respectively, according to [5],
[10], [8], [9]

IS � 2nqβU2
T and Q′

S � −2nqC
′
oxUT , (9)

with β � µnC ′
oxW/L. The position x has been normalized

to the channel length, ξ � x/Leff , and the voltages are all
normalized to UT , ψs � Ψs/UT , vg � VG/UT and vch �
Vch/UT .

E. Forward and Reverse Modes

The drain current is obtained by integrating (8) from
source (ξ = 0) to drain (ξ = 1), leading to [5]

id = if − ir =
∫ qf

qr

(2q′i + 1) · dq′
i, (10)

where the symmetry property of the device has been used
to split the drain current into a forward current if � IF /IS

and a reverse current ir � IR/IS that depend only on
the values of the inversion charge density at the source
qf � q′i(ξ = 0) and drain qr � q′i(ξ = 1) respectively

if = q2
f + qf and ir = q2

r + qr. (11)
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Fig. 3. Surface potential versus channel voltage.

Note that (11) can be inverted to express the forward and
reverse charge densities as a function of the forward and
reverse currents according to

qf =
2if√

4if + 1 + 1
and qr =

2ir√
4ir + 1 + 1

. (12)

The above equations establish a relation between the
forward and reverse currents and the forward and reverse
charges. The next section will derive a relation between
the forward and reverse charges and the voltages.

F. Pinch-off Voltage

As shown in Fig. 3, for a given gate voltage, the surface
potential increases with respect to the channel voltage and
then saturates to Ψs0 in weak inversion. In strong inver-
sion, Ψs can therefore be approximated by a linear function
of the channel voltage according to

Ψs
∼= Vch + Ψ0, (13)

with Ψ0 � 2ΦF + m ·UT , where m is a parameter which is
typically chosen between 2 and 4 in order to minimize the
approximation error. The pinch-off voltage VP is then de-
fined as the channel voltage for which the inversion charge
becomes zero under strong inversion assumption (i.e. as-
suming there is no moderate nor weak inversion) [5]. By
definition of Ψs0, it corresponds in Fig. 3 to the intersection
between the approximation given by (13) and Ψs0

Ψs0 � VP + Ψ0. (14)

Introducing (14) into (2) and setting Q′
i = 0, leads to

VG − VFB = VP + Ψ0 + γs ·
√

VP + Ψ0, (15)

which can be inverted to express VP as a function of VG

[5],

VP = VGT−γs·
[√

VGT +
(√

Ψ0 +
γs

2

)2

−
(√

Ψ0 +
γs

2

)]
,

(16)
where VGT � VG−VTO is the overdrive voltage and VTO �
VFB + Ψ0 + γs ·

√
Ψ0 is the threshold voltage.
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Fig. 4. Pinch-off voltage versus gate voltage.

As shown in Fig. 4, the pinch-off voltage is almost a
linear function of the gate voltage and can therefore be
approximated by [5]

VP
∼= VG − VTO

nv
, (17)

where nv is defined as [5], [9]

nv � dVG

dVP
= 1 +

γs

2 · √Ψ0 + VP

(18)

and is a function of the pinch-off voltage and therefore also
of the gate voltage as illustrated in Fig. 4.

It can be shown that there is a general relation between
the inversion charge density, the pinch-off voltage and the
channel voltage which is valid all along the channel [10],
[8], [9]

vp − vch(ξ) = ln(q′i(ξ)) + 2q′i(ξ). (19)

Eqn. 19 is of course valid at the source (where q′i = qf ) and
the drain (where q′i = qr) leading to

vp − vs = ln(qf ) + 2qf , vp − vd = ln(qr) + 2qr. (20)

A relation between the voltages and the currents is ob-
tained by replacing qf (qr) by (12) in (20) resulting in [2]

vp − vs = ln(
√

if + 1
4 − 1

2 ) +
√

4if + 1 − 1, (21a)

vp − vd = ln(
√

ir + 1
4 − 1

2 ) +
√

4ir + 1 − 1. (21b)

Unfortunately (21a) and (21b) cannot be inverted analyt-
ically to express the current as a function of the terminal
voltages, as it is required by a circuit simulator. Neverthe-
less it can either be inverted numerically with just a few
iterations or approximated by an analytical function within
the range of interest with a negligible error.

III. SMALL-SIGNAL MODEL

A. Transconductances

By definition, the source and drain transconductances
gms and gmd are proportional to the charges at the source
and drain qf and qr respectively. Replacing qf and qr by
(12) results in [2], [3]

gms = Y0 · qf = Y0 · 2if√
4if + 1 + 1

, (22a)

gmd = Y0 · qr = Y0 · 2ir√
4ir + 1 + 1

, (22b)
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Fig. 6. MOST intrinsic small-signal schematic.

where Y0 � IS/UT . Eqn. (22a) can then be used to derive
the gm/ID characteristic [2], [3]

gms · UT

IF
=

gms

if · Y0
=

2√
4if + 1 + 1

, (23)

which is often used in analog IC design to set the correct
operating point (i.e. inversion factor IC � if ) in satura-
tion corresponding to a desired transconductance at a given
current. It is plotted in Fig. 5 together with data measured
on several different processes.

B. HF Small-Signal Model

The general small-signal model of the intrinsic MOST,
valid in Non-Quasi-Static (NQS) mode of operation [10],
is presented in Fig. 6 together with the definitions of
the voltage controlled current sources (VCCS) [11]. The
gate transadmittance Ym depends on the source and drain
transadmittances Yms and Ymd according to [10], [11]

Ym =
1
nv

· (Yms − Ymd), (24)

with Yms
∼= gms · ξm and Ymd

∼= gmd · ξm [11], where ξm

is a bias independent function that accounts for the NQS
effects and therefore for the frequency dependence using
a frequency normalized to ωqs � 1/τqs which corresponds
to the limit between quasi-static (QS) and non-quasi-static
(NQS) operation [11]. ξm is plotted versus ωτqs in Fig. 7 a)
(black line) and is compared to measurements made at dif-
ferent bias (grey lines) [11].

The admittance Ygsi can also be decomposed into a prod-
uct [11], [12]

Ygsi = jωCox · cc · ξc, (25)
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where Cox � WLC ′
ox is the total gate oxide capacitance,

cc is a normalized capacitance that depends only on the
bias conditions through qf and qr and ξc is a transfer func-
tion that accounts for the NQS effects. A general expres-
sion of ξc valid in all regions of operation is presented in
[11], [12]. The NQS function ξc is plotted versus ωτqs in
Fig. 7 b). It clearly shows the -45 asymptote of the phase
reached for ωτqs � 1, which is characteristic of NQS ef-
fects. The symbols correspond to the data measured on
a PMOS device biased in the linear region (VDS = 0) for
several gate voltages. Note that in strong inversion and in
saturation (i.e. for qf � 1 and qr � 1), the normalized ca-
pacitance cc tends to 2/3, whereas in the linear region (i.e.
for qf = qr � 1) it reduces to 1/2. In weak inversion (i.e.
for both qf � 1 and qr � 1), cc reduces to qf , which cor-
responds to a diffusion capacitance since qf is proportional
to the current in weak inversion.

Admittance Ygbi is given by [11]

Ygbi =
nv − 1

nv
· (jωCox − Ygsi − Ygdi), (26)

where Ygdi is simply obtained from Ygsi in (25), by exploit-
ing the source and drain symmetry (i.e. permuting qf with
qr in the expressions of cc and ξc given in [11], [12]). Finally,
Ybsi and Ybdi are obtained from the following fundamental
relations [5], [11]

Ybsi = (nv − 1) · Ygsi, Ybdi = (nv − 1) · Ygdi. (27)

The above formulation is very compact and covers a wide
range of bias and frequency. Note that for ω � ωqs, the
NQS functions ξm and ξc simplify to their QS approxi-
mations ξm

∼= 1 − jωτqs and ξc
∼= 1, meaning that the

admittances in Fig. 6 reduce to capacitances.

IV. CONCLUSION

The EKV MOST charge-based model is based on funda-
mental physical considerations and relations between the
current, the charges, the voltages and the small-signal pa-
rameters that are valid in all modes of inversion. The model

derivation starts with exploiting the device symmetry and
the linearization of the inversion charge density to express
the forward and reverse normalized currents as a function
of the forward and reverse normalized charges. It then in-
troduces the pinch-off voltage to account for the substrate
effect and refer the effect of the gate voltage to the chan-
nel. This allows to derive exact relations between the con-
trol voltages and the forward and reverse currents that are
valid in all modes of inversion.

The small-signal model is based on a simple equivalent
schematic which is valid in QS and NQS modes of opera-
tion. By using a proper bias and frequency normalization,
only two basic functions are required to describe all the
components of the small-signal schematic. One is used for
the transadmittances and the other for the admittances.
The fundamental relations existing between the transcon-
ductances and the charges also allow to derive a normalized
gm/ID function valid from weak to strong inversion.

All these fundamental relations can also be used to
extend the basic intrinsic long-channel model presented
herein in order to include important effects related to the
reduction of the device geometry [4], [7], [13].
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